How can I make purification of hard-to-separate compounds greener?

The planet’s population is growing, its resources are dwindling – this is a problem.  On top of that environmental contamination from myriad sources is only compounding the issue of available clean food and water.

As chemists, we contribute to this issue, to some degree, by performing reactions that generate chemical waste in the form of unwanted by-products and excess solvents from work-up and purification. What can we, as chemists, do to help reduce our so-called “carbon footprint”?

In this post, I discuss some ways to improve flash chromatography resource utilization, especially for hard separations.
Continue reading How can I make purification of hard-to-separate compounds greener?

So, which detector should I use for flash column chromatography?

In my role as senior technical specialist at Biotage I am often asked about compound detection options. For most flash chromatography methods, UV is the default detection tool since a majority of compounds do absorb some UV light.

Diode array UV detectors provide chemists choices in wavelength selection, providing the ability to widen or narrow the wavelength range needed to detect specific compounds and enhance their sensitivity.

When diode array detectors fail to detect compounds, it is because the compounds have no chromophore, e.g. carbohydrates, low extinction coefficients, exist in really low concentrations, or any combination of these.  In these situations, alternative detectors are quite beneficial.  In this post I will discuss a couple of detector options for flash chromatography. 

Continue reading So, which detector should I use for flash column chromatography?

5 Steps to successful flash chromatography

The bane of organic synthesis for most chemists is purification rather than synthesis. Synthetic reaction mixtures are rarely devoid of impurities so some type of purification is necessary.  Most often flash chromatography is used but for many chemists, it is less well understood than their chemical reaction and provides some level of anxiety.

In this post, I will summarize the five most important steps to creating a successful flash chromatography method and thus the anxiety associated with it.

Continue reading 5 Steps to successful flash chromatography

How does solvent choice impact reversed-phase flash chromatography separations?

I have recently posted on how solvent choice influences the separation of hard to resolve compounds using normal-phase flash chromatography. As a chemist with an inquiring mind, I thought I would expand my research beyond normal-phase and see what happens in reversed-phase.

In this post, I share my results. 

Continue reading How does solvent choice impact reversed-phase flash chromatography separations?

How to efficiently scale-up flash column chromatography

For synthesis and medicinal chemists, compounds are typically made only once en route to a final product. Once that compound shows activity toward a particular target, then the synthesis is scaled up meaning that purification too requires scaling. The same is true in natural product research where once a high-value compound is isolated at small scale, there is a need to isolate it at larger scale.

Both of these scenarios can be problematic to scale-up/ process chemists when other, non-chromatographic purification techniques are not successful. When this happens, either a different synthetic route or extraction process is needed or large scale chromatography is employed. In this post, I will explain how flash chromatography can be successfully scaled while minimizing time and solvent consumption. Continue reading How to efficiently scale-up flash column chromatography

How can I rapidly remediate THC from CBD in my hemp extract using flash column chromatography?

Tetrahydrocannabinol, aka THC, is a hallucinogen found in cannabis and, to a lesser degree, in hemp.  Though THC is legal in some locations in the US and Canada, there is a growing market for its non-hallucinogenic cousin, cannabidiol (CBD), which has purported medical benefits.

The problem with isolating CBD from cannabis and hemp is contamination from THC, which is typically present at a moderate to high percentage. In this post, I will provide some insight into rapidly purifying CBD to remove THC. Continue reading How can I rapidly remediate THC from CBD in my hemp extract using flash column chromatography?

How can I modify my flash chromatography method to separate chemically similar compounds?

The challenges organic, medicinal, and natural product chemists face are many: from designing reactions, to optimizing synthesis, work-up / extraction, and purification / isolation of the desired compound or compounds. Among those issues related to purification / isolation is the common problem of separating compounds with similar chemistry that either co-elute or separate poorly.

In this post I will discuss some tips on how to “resolve” this issue (yes, pun intended).

Continue reading How can I modify my flash chromatography method to separate chemically similar compounds?

Ionizable compound purification using reversed-phase flash column chromatography

With most chromatographic purifications, only two solvents are needed to adequately separate compounds from each other. Unfortunately, there are instances where the separation is either poor or cannot be accomplished with “normal” elution conditions such as those with ionic or very polar organic molecules.

In this post I offer some solutions to this issue.

Continue reading Ionizable compound purification using reversed-phase flash column chromatography

How do I purify ionizable organic amine compounds using flash column chromatography?

For most organic reaction mixture purifications the process is fairly straightforward. Use hexane/ethyl acetate or, for polar compounds, DCM/MeOH.  But what do you do if this doesn’t work and your compounds are basic organic amines?

In this post, I re-examine the options available to achieve an acceptable organic amine purification when typical separation methods are insufficient. Continue reading How do I purify ionizable organic amine compounds using flash column chromatography?

What do I do if a 2-solvent gradient will not separate my sample?

Usually, a 2-solvent or binary gradient will separate your desired compound from the by-products and impurities. Sometimes though, you can encounter a mixture in which some compounds co-elute and are not separable with any binary gradient you try.

I encountered this situation recently while trying to purify a lavender essential oil and have dedicated this post to how I solved the problem.  Continue reading What do I do if a 2-solvent gradient will not separate my sample?