How can I reduce flash column purification time and cost?

This is a question being asked of my colleagues and me more and more frequently, especially in pharma accounts.  Why?  Well, you are familiar with the adage – Time is Money, right.  Well this really applies to them. A new molecular entity (NME) created as a pharmaceutical can take up to a decade and a billion dollars to bring to market.  Granted, the biggest costs are in the clinical trials but the synthetic route and the time to discover and make the compound – and purify it – plays a major role within drug discovery and development. This timeline is not helped by the ever increasingly difficult-to-synthesize compounds being investigated as drug candidates today.

With that in mind, this post focuses on ways to speed the purification process without sacrificing purity and yield. Continue reading How can I reduce flash column purification time and cost?

How do particle size and flow rate affect normal-phase flash column chromatography?

Media particle size and solvent flow rate play major roles in chromatographic separations including flash purification.  This is true in both reversed-phase chromatography (aka partition chromatography) as well as normal-phase chromatography.

The roles played are related to the overall compound mass-transfer kinetics and diffusion/dispersion as they migrate through the column.  Smaller particles reduce sample dilution by reducing interstitial volume, while flow rate impacts the ability of molecules to efficiently pass through the porous particles.

In this post, I will show how both particle size and flow rate impact flash chromatography.

Continue reading How do particle size and flow rate affect normal-phase flash column chromatography?