How can I perform normal-phase and reversed-phase column chromatography on one flash system?

For chemists, flash chromatography is part of their everyday synthesis workflow. For most syntheses, crude reaction mixtures are purified by normal-phase (aka adsorption) chromatography.  There are times; however, where the crude mixture’s complexity and polarity make normal-phase chromatography very challenging.  For these situations, reversed-phase (aka partition) chromatography may be a preferred option.

But, if you have only one flash system available, can you, should you, and how do you efficiently switch from non-polar, normal-phase solvents to polar, reversed-phase solvents – and back again without issues? In this post I’ll attempt to shed some light on the topic. 

Continue reading How can I perform normal-phase and reversed-phase column chromatography on one flash system?

How do particle size and flow rate affect normal-phase flash column chromatography?

Media particle size and solvent flow rate play major roles in chromatographic separations including flash purification.  This is true in both reversed-phase chromatography (aka partition chromatography) as well as normal-phase chromatography.

The roles played are related to the overall compound mass-transfer kinetics and diffusion/dispersion as they migrate through the column.  Smaller particles reduce sample dilution by reducing interstitial volume, while flow rate impacts the ability of molecules to efficiently pass through the porous particles.

In this post, I will show how both particle size and flow rate impact flash chromatography.

Continue reading How do particle size and flow rate affect normal-phase flash column chromatography?

How can I make purification of hard-to-separate compounds greener?

The planet’s population is growing, its resources are dwindling – this is a problem.  On top of that environmental contamination from myriad sources is only compounding the issue of available clean food and water.

As chemists, we contribute to this issue, to some degree, by performing reactions that generate chemical waste in the form of unwanted by-products and excess solvents from work-up and purification. What can we, as chemists, do to help reduce our so-called “carbon footprint”?

In this post, I discuss some ways to improve flash chromatography resource utilization, especially for hard separations.
Continue reading How can I make purification of hard-to-separate compounds greener?

How does solvent choice impact reversed-phase flash chromatography separations?

I have recently posted on how solvent choice influences the separation of hard to resolve compounds using normal-phase flash chromatography. As a chemist with an inquiring mind, I thought I would expand my research beyond normal-phase and see what happens in reversed-phase.

In this post, I share my results. 

Continue reading How does solvent choice impact reversed-phase flash chromatography separations?

How to efficiently scale-up flash column chromatography

For synthesis and medicinal chemists, compounds are typically made only once en route to a final product. Once that compound shows activity toward a particular target, then the synthesis is scaled up meaning that purification too requires scaling. The same is true in natural product research where once a high-value compound is isolated at small scale, there is a need to isolate it at larger scale.

Both of these scenarios can be problematic to scale-up/ process chemists when other, non-chromatographic purification techniques are not successful. When this happens, either a different synthetic route or extraction process is needed or large scale chromatography is employed. In this post, I will explain how flash chromatography can be successfully scaled while minimizing time and solvent consumption. Continue reading How to efficiently scale-up flash column chromatography

Ionizable compound purification using reversed-phase flash column chromatography

With most chromatographic purifications, only two solvents are needed to adequately separate compounds from each other. Unfortunately, there are instances where the separation is either poor or cannot be accomplished with “normal” elution conditions such as those with ionic or very polar organic molecules.

In this post I offer some solutions to this issue.

Continue reading Ionizable compound purification using reversed-phase flash column chromatography

How do I purify ionizable organic amine compounds using flash column chromatography?

For most organic reaction mixture purifications the process is fairly straightforward. Use hexane/ethyl acetate or, for polar compounds, DCM/MeOH.  But what do you do if this doesn’t work and your compounds are basic organic amines?

In this post, I re-examine the options available to achieve an acceptable organic amine purification when typical separation methods are insufficient. Continue reading How do I purify ionizable organic amine compounds using flash column chromatography?

What do I do if a 2-solvent gradient will not separate my sample?

Usually, a 2-solvent or binary gradient will separate your desired compound from the by-products and impurities. Sometimes though, you can encounter a mixture in which some compounds co-elute and are not separable with any binary gradient you try.

I encountered this situation recently while trying to purify a lavender essential oil and have dedicated this post to how I solved the problem.  Continue reading What do I do if a 2-solvent gradient will not separate my sample?

Does a longer flash column really provide better purification?

This is an interesting question that I am asked from time to time. There does seem to be two camps in which chemists reside – one believing longer and thinner columns provide better separations and the other preferring shorter and fatter columns to do the same chromatography.

Which is right? That is a question I will try to answer based on my own data. Continue reading Does a longer flash column really provide better purification?

Why do I see more peaks than I expect with flash column chromatography?

Are you observing more chromatographic peaks than you expect compared to TLC or other assessment data?  Well, it could be that your method is separating some isomers or, it could be that there is an actual method issue.

In this post I will discuss what could cause a method issue and suggest some ideas as to how to fix it. Continue reading Why do I see more peaks than I expect with flash column chromatography?